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Reconstruction of the parameter spaces of dynamical systems
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Parameter variations in the equations of motion of dynamical systems are identified by time series analysis.
The information contained in time series data is transformed and compressed to feature vectors. The space of
feature vectors is an embedding for the unobserved parameters of the system. We show that the smooth
variation ofd system parameters can lead to paths of feature vectors on smoothd-dimensional manifolds in
feature space, provided the latter is high-dimensional enough. The number of varying parameters and the
nature of their variation can thus be identified. The method is illustrated using numerically generated data and
experimental data from electromotors. Complications arising from bifurcations in deterministic dynamical
systems are shown to disappear for slightly noisy systems.
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I. INTRODUCTION

Time series analysis has become a popular approac
the investigation of dynamical behavior of systems in exp
ments and field measurements. Methods which are usu
callednonlinear refer to the reconstruction and exploitatio
of structure in phase space@1,2#, and are very powerful if a
time series is generated by an almost deterministic lo
dimensional dynamical system. These, like also almost
other time series analysis methods, require a strict statio
ity of a time series.

However, in a huge number of dynamical phenomena
variability of the dynamics is much more relevant or inte
esting than the dynamics itself. One example is the acti
of the human heart reflected by electrocardiagram rec
ings: The electrophysiological mechanism which creates
signature of an individual heartbeat is rather well underst
and rather robust, but the heart rate has a large variab
and this variability may tell a lot about the physical conditi
of the heart as an organ.

Although there are already different well established
proaches to dynamical pattern recognition, data classifi
tion, and the extraction of dominant modes, another poin
view will be taken here. In this paper we explicitly assum
that the variability of a given system’s dynamics origina
from the change of a small set of system parameters. It
be the goal of this paper to gain access to these unobse
and typically unknown parameters through the analysis o
set of different time series reflecting this dynamical variab
ity. We propose to reconstruct the parameter space from
time series data, wherefeaturesof the underlying time series
form the elements of the reconstructed parameter vec
Their changes will reflect the variation of system paramet
e.g., when modifying experimental conditions or in a nons
tionary setting. This idea implies that the fast time scale
sociated with the dynamics of the system itself is elimina
by a kind of projection, and changes of system parameter
larger time scales thus gain enhanced observability. We
comment on thea posterioridistinction between dynamica
variables and parameters later, in particular in the case
1063-651X/2001/63~5!/056215~11!/$20.00 63 0562
to
i-
lly

-
ll
r-

e

y
d-
e
d
y,

-
a-
f

s
ill
ed
a
-
he

rs.
s,
-

s-
d
on
ill

a

nonstationary setting, where the parameters themselves
also time dependent.

We will consider two related settings for the reconstru
tion of parameter spaces. One is the situation of nonstat
arity, where we assume that parameters vary as a functio
time. Provided that this time dependence is slow enou
compared to the time scales of the system’s dynamics,
can map this situation by a segmentation of the time se
onto the second setting, where we assume to posse
sample of time series from a given system with differe
constant parameter settings. We will show that in an ide
ized setting for both situations, the following holds: Ifd pa-
rameters are varied, the set of all conceivable feature vec
is confined to ad-dimensional manifold in the reconstructe
parameter space. If the number of variable parameters is
known, it can be identified as the maximal dimensionality
the set of feature vectors, and, if the variation is time dep
dent, we can follow the path in the reconstructed param
space in order to identify the nature of the nonstationar
Examples will demonstrate that we can also obtain mean
ful results in realistic situations.

Potential future applications of this idea range from a b
ter understanding of laboratory experiments, where the c
stancy of control parameters can thus be checked, over
namical variability in field measurements, and t
understanding of driving forces causing nonstationarity
tasks such as data classification and failure detection. D
classification of a similar type was suggested in Ref.@3#, and
nonstationarity was traced in a kind of feature space in R
@4#. Feature extraction is a well known problem in statist
which can be studied under several aspects such as pa
recognition or signal representation.

The concept of parameter reconstruction will be intr
duced and the main claim will be formulated in an abstr
way in Sec. II. There, relations to established methods
data classification will also be discussed. For the class
linear stochastic models our claim can be proven by referr
to well known properties of these systems. In a more gen
setting, deterministic and stochastic dynamical systems
discussed in Sec. IV, where certain complications can ar
©2001 The American Physical Society15-1
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in particular through bifurcations. We illustrate theoretic
considerations by numerical examples. In Sec. VI we ap
the method to time series data from electromotors, and s
that essentially two parameters drive the large dynamic v
ability contained in 84 different time series. In Sec. VII w
compare our approach to a method of parameter identifi
tion suggested by Parlitzet al. @5#.

II. RECONSTRUCTION OF UNOBSERVED SYSTEM
PARAMETERS

We shall establish the concept of parameter reconst
tion for random dynamical systems with the general form

dxW

dt
5 fW„xW~ t !,jW ,pW … ~1!

where xWPG,Rl is the state vector,pW PRd is a parameter
vector, andjW represents a noise term. IfjW (t)[0 and pW
5const, Eq.~1! defines a deterministic dynamical syste
The time series is then a sequence of~most often scalar!
observations$sn%,n51, . . . ,N, where sn5h„xW (t5nDt)…,
with a measurement functionh and a sampling intervalDt. If
we allow the parameterspW to be time dependent, the functio
pW (t) is assumed to vary on much larger time scales thanxW (t)
or evenjW do. However, when the starting points are tim
series data of an unknown system, there may be some a
guity which will be discussed in Sec. V. The concept
parameter reconstruction will include two limiting cases.~a!
An ensemble of different time series obtained from a so
tion of the system in Eq.~1! with the same measureme
functionh and same sampling intervalDt is given, but where
each single series corresponds to some individual fixedpW .
This situation is the typical starting point for the classific
tion task.

~b! In a single long time series, the parameterspW are
slowly varying in time. This corresponds to the problem
nonstationarity. However, the nonstationary situation can
approximately mapped to~a! by cutting the time series into
~potentially overlapping! segments, if the change of the p
rameters is sufficiently slow. Since in this case the time
ries segments are still nonstationary, time averages need
compute features do not represent averages according
invariant distribution. Hence, for the formal derivation of th
method we assume an~unrealistic! case in which, in the non
stationary situation, the parameters vary in a steplike man
with small absolute changes from one time series segme
the successive one, with no changes inside each segme
this case,~b! is exactly mapped to~a!.

Hence the formal derivation and the essential part of
numerical illustrations will focus on the classification pro
lem for generality, and only in Sec. V will we come back
the non-stationarity. The main idea of this paper is then
following: Whitney’s embedding theorem@6# states that any
given d-dimensional smooth manifold can be embedded
anRk wherek>2d11. Now let thisd-dimensional manifold
be the parameter space of a system, i.e., equations of m
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like Eq. ~1! depend ond parameters as stated above. Follo
ing Whitney’s theorem, we thus needk>2d11 independent
smooth representations of thesed parameters in order to re
construct the parameter space in anRk. A scalar time series
obtained from a trajectory of the system should thus be c
verted intok different and mutually independent values: t
features. In order to represent the parameters and not
details of the time series, these features should be inde
dent of the initial condition or the particular realization of th
time series~invariant under shift in time!, but they have to
depend on the underlying parameters.

Some definitions are necessary in order to formalize
idea. As stated in Eq.~1!, we do not want to distinguish
between purely deterministic data and time series from r
dom processes. To be general, we will thus speak abou
source of the time series and on how many parameters
source depends. The dependence of the source on the pa
eters can be such that it is essentially unobservable thro
the time series~which might depend on the measureme
function!. We naturally want to exclude these paramet
from our discussion, and we thus define the following tw
influences, which will be the only ones covered by this p
per.

Distribution influence: At least one of the moments of th
probability distribution of the observable depends on the
rameter.

Dynamical influence: At least one of thenth order tem-
poral correlations depends on the parameter.

The standardizing sampleS5$Sj%, j 51, . . . ,D, Sj

5$s1
j , . . . ,sNj

j % is an ensemble ofD time series which rep-

resents different settings of those parameters which are a
ally varied. Each single time seriesSj is assumed to be sta
tionary with constant parameters, and is obtained with
same measurement function and sampling interval.

Thenumber of effective parametersis de . Since different
parameters might have identical effects, or some parame
might be kept constant in the standardizing sample, the n
ber of effective parametersde might be smaller thand. This
might be trivial ~if a parametera is just split into a5a1
1a2) or nontrivial, and might, e.g., be shown by nontrivi
transformations of the equations defining the source.

Finally, we define afeature f, a statistical quantity which
does not~at least in the limit of infinite sample size! depend
on the realization of the process~e.g. initial condition, indi-
vidual piece of trajectory! but only on the parameters of th
source is defined to be a feature. A set of features$ f i% is
called independent, if there is no functiong such that f i
5g($ f j%) iÞ j for all arbitrary time series.

The standardizing sample will then be compressed int
set of identical cardinality of feature vectors$ fW j%, where each
feature vector is composed of the values of a set of indep
dent featuresf i on the corresponding time seriesSj : ( fW j ) i
5 f i(Sj ). Based on these definitions we make the followi
threepropositions.

~a! When the standardizing sample represents the va
tion of de effective parameters which possess either distri
tion influence or dynamical influence or both, then the
exists a (k52de11)-dimensional embedding space co
5-2
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RECONSTRUCTION OF THE PARAMETER SPACES OF . . . PHYSICAL REVIEW E 63 056215
structed by the direct product ofk52de11 suitable inde-
pendent features, in which the parameter space is uniq
immersed.

~b! The set of feature vectors, representing a standardi
sample of an unknown source and an unknown effec
number of parametersde , is confined to a<de-dimensional
manifold in embedding space formed by the direct produc
>2de independent features. The extrapolated dimensiona
of this set of feature vectors saturates at a value<de , where
the identity is found for suitable features and fork.de .

~c! If the standardizing sample is derived by segmentat
from a single long time series, the time ordering of the fe
ture vectors defines a path in feature space. Ifk.2de , this
path is topologically equivalent to the pathpW (t) of the time
dependent parameters in their parameter space.

A. Remarks

To exploit proposition~b!, one has to consider that th
finite set of feature vectors obtained from the standardiz
sample has a dimension zero. It is assumed to be a fi
random sample of a set with an unknown dimensionde . The
dimensionde has to be extrapolated numerically, e.g., as
numerical dimension estimates of strange attractors, and
the standardizing sample has to be sufficiently large. An
suitable choice of features can only hide certain parame
but cannot enhance their number.

The distribution influence can show up in static charac
istics such as a mean, standard deviation, or scaling pro
ties such as dimensions, i.e., in all quantities which invo
the invariant measure of the deterministic dynamical sys
or the invariant probability density function~PDF! of the
stochastic system. The dynamical influence can express i
by quantities involving time lags, such as power spectru
entropies, or Lyapunov exponents. The distinction betw
distribution and dynamical influence is not a sharp one. D
tributions in the time delay embedding space also con
essential dynamical information.

For Gaussian distributions with zero mean, the varia
and the fourth moment are related by 3^x2&22^x4&50.
Nonetheless, second and fourth moments are two inde
dent features since no general relationship holds for sam
~time series! with arbitrary PDF’s.

There exist parameters which have dynamical influen
without distribution influence and vice versa. A simple e
ample is a series of Gaussian random variables, where
variance of the distribution and the correlations between s
cessive values can be tuned independently through the m
@an AR~1! model; see below#

xn115
c1

s2
xn1S s22

c1
2

s2D jn , ~2!

where jn is Gaussian white noise with unit variance,s2

5^xn
2& is the variance, andc15^xnxn11& is the autocorrela-

tion function at lag 1.
The reason why we need the Whitney 2de11 ‘‘overem-

bedding’’ lies in the nonlinear way in which the paramete
might show up in the features. By the choice of features
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introduces a metric in feature space, and thus determines
nature of the manifold which represents the parameter sp
Optimal choices of the features might impose a Euclide
nature on it, so thatk5de might be sufficient.

The features are quantities~such as the mean value!
which are well defined for a given process, but whose val
on a finite sample are computed by a statistical estima
Since the reconstruction task is a comparative task
samples of equal size, we do not need an estimate that
accurate as possible, so that a potential bias or inconsist
does not matter too much. More relevant for a sharp disti
tion is the variance of an estimator: Given different fin
time series as realizations of the same process with iden
parameters, how much does the outcome of our estim
vary? In order to be able to identify parameter changes, th
statistical fluctuations should be as small as possible, and
need to employ estimators which have a minimal varianc

We will present a proof of the propositions only for th
class of linear stochastic models. For more general dyna
cal systems, certain complications arise which typically
not destructive from a practical point of view, but might b
prohibitive for a more general proof. Since Whitney’s the
rem requires a smooth dependence of the coordinates o
embedding space on the position in the original manifo
bifurcations in deterministic dynamical systems will turn o
to pose problems, which can be circumvented by the inc
sion of the dynamical noisejW in Eq. ~1!. It is thus plausible
that a general proof is possible only for noise driven syste

B. Relation to statistical approaches

Our approach uses ideas of feature selection and ex
tion similar to those in other statistical methods. We c
employ the same procedures, e.g., principal compone
Fourier or wavelet analysis. In this paper we restrict o
selves to a small set of different features, and it seems
there is no general guideline for an optimal choice of fe
tures. The main difference of our approach compared
more traditional methods of classification and character
tion lies in our hypothesis about the source of the data
hence in the information which we want to extract.

In statistical pattern recognition@7# one begins with a se
of random vectors of lengthN, where each vector is a set o
random variables which can be, but are not required to b
time series, so that in general there is no dynamical inform
tion contained in them. The idea behind classification is th
that there exist different classes of vectors which are cha
terized and distinguished by different probability distrib
tions in thisN-dimensional space. The minimal classificatio
error is given essentially by the overlap of these distrib
tions. Since in the typical classification task these distrib
tions are unknowna priori, they also have to be estimate
from a sample of vectors. The extraction of features, a
hence the projection from this usually high-dimension
space onto a low-dimensional feature space, has two ob
tives: more reliable estimators of the probability distributio
and the goal of simplifying the construction of the classifi
Good features are those which increase the classification
ror by this projection least.
5-3
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STEFAN GUTTLER, HOLGER KANTZ, AND ECKEHARD OLBRICH PHYSICAL REVIEW E63 056215
In our approach we start with a distinction between a s
space spanned by state variablesxW , and a parameter spac
This distinction is not present in the traditional framewo
Thus, in the language of classification, we have a continu
of classes, since every set of fixedd system parameters, i.e
every point in the parameter space, defines a new class
the other hand, since all classes can be distinguishe
theory by ad-tuple of parameter values, we know that
projection onto a (2d11)-dimensional feature space wi
suffice for our classification problem. In the ideal case~infi-
nite data sets! there was no overlap of distributions. In rea
istic situations with finite time series, our feature vecto
suffer from statistical inaccuracy; hence there is some o
lap, but it is of a different origin than in statistical patte
recognition.

III. RECONSTRUCTION OF PARAMETERS IN LINEAR
STOCHASTIC MODELS

A frequently used method for~also time dependent! fea-
ture extraction consists in fitting AR or ARMA models t
data~see, e.g., Ref.@8# for two examples of electroenceph
logram data!. In our setting, these are models where the
lation between features and parameters can be fully un
stood. The class of linear stochastic models is comple
covered by the well studied autoregressive moving aver
ARMA( M ,N) models,

xn115 (
j 50

M21

ajxn2 j1(
j 50

N

bjhn2 j , ~3!

where h j are independently Gaussian distributed rand
variables, and the set of fixed coefficientsaj and bj deter-
mines the properties of the model@9#. These are the param
eters of the system. The outcomexn is again a Gaussian
random variable with zero mean. Its distribution is ful
characterized by its variances25^xn

2&, i.e., all static features
~higher moments of the probability distribution! are func-
tions of s2. Hence in such a feature space, an arbitrary
semble of ARMA time series can at most yieldde51.

Consequently, one also has to test for dynamical influe
in order to exclude~or verify! that more than one paramet
is varied. For ARMA(M ,N) models the set of coefficientsaj
and bj can be directly mapped onto the properties of
power spectrums2(k),

s2~k!5U (
j 50

N

bje
i2pk j /L

12(
j 51

M

aje
i2pk j /LU , ~4!

for a time series of lengthL, which can be mapped to th
autocorrelation function by another Fourier transform. In a
dition, it is well known that all higher order statistics can
derived from this second order statistics uniquely@9#. Evi-
dently, an arbitrary feature vector is thus confined to anN
1M )-dimensional manifold in feature space, proving o
proposition. Moreover,~selected frequency bands of! the
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power spectrum or, equivalently~selected lags of!, the auto-
correlation function, provide a very simple set of featur
which represent the fullde parameters in feature space.

By the methods discussed in Sec. IV A, one can direc
determine the coefficientsaj of the AR part of the model, bu
this way one does not have a handle on the MA part. T
nonetheless makes sense if the systems under study
driven by external colored noise represented by the MA p
whereas only the AR part reflects the system’s own dyna
ics which is suspected to vary.

IV. DETERMINISTIC SYSTEMS WITHOUT
AND WITH WEAK NOISE

A. Equations of motion from data

The equations of motion of deterministic dynamical sy
tems@i.e., jW[0 in Eq. ~1!# can in principle be fully recon-
structed from observed data@2#. In stochastic models~such
as the ARMA! or weakly noisy deterministic models, onl
the deterministic feedback part can be reconstructed; h
ever, this is often the relevant part. For simplicity, we restr
our discussion to discrete time@10#, but there are no difficul-
ties in extending the arguments to continuous time syste
~differential equations! @11#. Let xWn115FW p(xWn) be the itera-
tion of a map in theRl , andsn5g(xWn) be a scalar measure
ment. Moreover, we assume that there ared parameters inFW p
which will be varied. If instead of$sn% the series of vectors

$xWn% were measured, the most direct and obvious way
reconstruct thed parameters would be to estimateFW p from
the data. This is conveniently done by choosing a suita
functional formGW q for the unknownFW , depending on a huge
set of free coefficients, and to minimize the one-step pred
tion error e where e25(1/N)(@xWn112GW q(xWn)#2, with re-
spect to the coefficientsq. If the true functionFW p can be
approximated byGW q with sufficient precision, a variation o
the parametersp will induce a change of the coefficientsq
@3#. Our claim from above now means that the variation
the ~in principle arbitrarily large! set of coefficientsq takes
place on ad-dimensional manifold. This statement becom
trivially true if FW can be obtained fromGW by setting all butd
coefficients identical to zero.

When only a scalar time series$sn% is recorded, due
to the theorems of Saueret al. @12#, an equivalent ofFW

exists in the delay embedding space:sn115H(sWn)
5H(sn ,sn21 , . . . ,sn2m11). Again, H can be estimated
from the data by choosing a suitable functional form a
minimizing the one-step-prediction errore, where e2

5(1/N)(@sn112Hq(sWn)#2 with respect to the free coeffi
cientsq. Due to the fact that there is a one-to-one relati
between the dynamics in the delay embedding space an
the original phase space,Hq depends on the parametersp in
FW p . Under variation ofp the set of arbitrarily manyq’s is
confined to ad-dimensional manifold. The details of how th
set ofq’s depends on the set ofp’s depend on the details o
HW and the measurement functiong by which the scalar ob-
5-4
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RECONSTRUCTION OF THE PARAMETER SPACES OF . . . PHYSICAL REVIEW E 63 056215
servables are obtained. In general, the dependence is no
ear, such that the manifold to which theq’s are confined is
curved and thus can be embedded in anRk only for suffi-
ciently largek, where Whitney’s theorem states thatk.2d is
sufficient.

As an illustration, we study time series generated by t
maps of the type

xn115 1
2 2auxnu ~5!

for aP@1,1.6#. The chaotic motion is confined to two sub
intervals of the interval@21/2,1/2#. We assume that we d
not know the source of the data, and perform a fit with
sixth order polynomial,Gc(x)5( i 50

6 cix
i . Resulting fit coef-

ficients obtained from 20 time series of length 1000, each
different values ofa, are shown in Fig. 1: The variations o
c1 , c2, and c3 ~the other coefficients yield equivalent fig
ures! clearly confirm that all time series are related to t
variation of a single parameter. This rather simple exam
demonstrates that we do not have to require the~unrealistic!
case that the ‘‘true’’ equation of motion can be represen
exactly by our fit.

The reconstruction of the equations of motion is the m
obvious way to get a handle on the unobserved parame
However, in principle, every feature which depen
smoothly on the parameters should be suited as one co
nate in the reconstruction space. In the tent-map example
one-step prediction errore obtained by the fits with sixth
order polynomials, together with, e.g., the variance of
distribution of the data, and its mean, again yields feat
vectors which nicely align on a one-dimensional curve.

B. Bifurcations

Complications for deterministic dynamical systems ar
from the possibility of bifurcations. Under smooth chang
of parameters, the dynamical behavior can change drastic
at a bifurcation point in the parameter space, such as the
of stable periodic orbits from a chaotic attractor. Most fe
tures will thus strongly change at a bifurcation point. Fro
the theoretical point of view most bifurcation types creat
continuous, albeit fast, change of properties such as the
variant measure and the Lyapunov exponents. As a pr
typical example, let us consider a part of the bifurcation d
gram of the He´non map,xn11512axn

21bxn21, for a path

FIG. 1. The coefficientsc1 , c2, andc3 of the fits to data gen-
erated by the tent map@Eq. ~5!#, ~connected by lines for increasin
a) and the projections onto each of the three planes.
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in the (a,b) plane shown in Fig. 3. The variation of th
maximal Lyapunov exponent of typical orbits is shown
Fig. 2.

Subcritical bifurcations create a discontinuous change
all features. But even if bifurcations are continuous as in
above example of the He´non map, the changes can be
rapid as a function of the control parameter that they will,
practice, appear to be discontinuous. Features will thus
fectively jump at bifurcations, and it will be hard to identif
whether time series before and after a bifurcation are rela
to each other by the variation of a single parameter. T
typical dynamical system is not uniformly hyperbolic, an
thus can have bifurcations everywhere in parameter sp
From a theoretical point of view this is destructive of o
concept, since embedding in the spirit of Whitney is on
possible if the features are continuous functions of the
rameters if we want to conserve topology, and even smo
functions of the parameters if we want to conserve a me
structure.

In practice, however, purely deterministic low
dimensional dynamical systems are rare, and as soon as
domness comes into play all changes at bifurcations can
expected to be not only continuous but even smooth. In
ducing a few percent of interactive noise into the He´non
map, i.e., replacing the He´non map by a stochastic process
the form

xn11512axn
21bxn211jn~xn!, ~6!

wherej(xn) is white noise~for technical reasons correlate
with the data such that trajectories do not leave the basi
attraction and escape to infinity!, smoothes the bifurcation
sufficiently. The smoothness is related to the fact that in
active noise can be reinterpreted as some fast stochastic
tuation of the parametersa or b:

FIG. 2. The maximal Lyapunov exponentl of the Hénon map
@Eq. ~6!, without the noise term# plotted vs the parametera. The
corresponding path in the parameter space (a,b) is indicated in Fig.
3 by a black line. Althoughl varies smoothly at the bifurcation
points ~zero crossings!, and continuously elsewhere, large fluctu
tions due to bifurcations occur on arbitrary small scales on
parameter axis.
5-5
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xn11512anxn
21bxn21 , an5a„11 j̃n~xn!…. ~7!

Hence adding noise to the equations of motion correspo
to the elimination of all structure in parameter space
scales smaller than some cutoff related to the noise am
tude.

Numerical simulations of the noisy He´non map illustrate
this nicely. In Figs. 3 and 4 the parameter plane of Eq.~6!
without ~with! the noise term is shown. Different gray scal
represent the three types of asymptotic dynamical behav
namely, stable periodic orbits~light gray!, chaotic trajecto-
ries in a bounded region of phase space~dark gray!, and
escape to infinity~white!. In addition to this qualitative char

FIG. 3. The parameter space (a,b) of the Heńon map@Eq. ~6!,
without the noise term#. Only the largest stable islands are resolv
here. A negative maximal Lyapunov exponentl of the trajectories
is represented by light gray, while the darkly shaded region co
sponds to positivel. For parameter values in the white region,
bounded solution exists. The black line indicates the path in par
eter space for whichl in Fig. 2 is calculated.

FIG. 4. The parameter space (a,b) of Eq. ~6! including the
noise term; the gray shading is as in Fig. 3. The black grid indica
the parameter set underlying the standardizing sample of Fig.
05621
ds
n
li-

rs,

acterization, we computed the maximal Lyapunov expon
of every trajectory through expansion in tangent space~ei-
genvalues of products of Jacobians along the trajecto!,
which is defined for both purely deterministic and noisy tr
jectories. Depending on the choice of parameters (a,b) ~and
hence the variance of the signal!, the standard deviation o
the noise amplitude is'2 –4 % of the standard deviation o
the time series. Evidently, the small amount of noise wip
out all structures on small length scales in the param
space. This leads to the vanishing of all stable islands in
darkly shaded region in Fig. 3; however, even if some lar
one remained, the maximal Lyapunov exponent and the
variant measure would change smoothly when the par
eters approach the stability regime of a periodic orbit.

The effect of interactive noise on the Lyapunov expon
is illustrated in Figs. 5 and 6. We plot the maximal Lyapun
exponentl of Eq. ~6! for the parameter values (a,b) on a
grid in the parameter plane for which a bounded solut
exists. Without a noise term coupled to the He´non map the
very intricate structure ofl due to the large number of bi
furcations is evident. The smooth but very rapid fluctuatio
of l in Fig. 5 can be traced to arbitrarily small length scal
as shown in Fig. 2. Other features, such as the expecta
value or the standard deviation of a time series, show a s
lar behavior. In clear contrast to this, the Lyapunov expon
~and as well the other features! calculated from Eq.~6! varies
only slowly due to the smoothing effect of the dynamic
noise on small length scales in parameter space.

The identification of the varying parameters can be p
formed for this smoothed situation. Selecting 2000 pairs
parameter values (a,b) on each line of the grid plotted in
Fig. 4, we produce a time series of length 2000 for each

-

-

s

FIG. 5. The maximal Lyapunov exponentl of the unperturbed
Hénon map for the parameter values (a,b) on a 1203120 grid in
the parameter plane for which a bounded solution exists.

FIG. 6. The maximal Lyapunov exponentl of Eq. ~6! for the
same set of parameters as in Fig. 5.
5-6
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RECONSTRUCTION OF THE PARAMETER SPACES OF . . . PHYSICAL REVIEW E 63 056215
them. This set forms our standardizing sample, and, s
both a andb were evidently varied, the effective number
parameters is 2. As features, here we choose the expect

valuex̄5^x&, the standard deviations5A^(x2 x̄)2&, and the
maximal Lyapunov exponentl. In Fig. 7, every time series
of the standardizing sample is represented by a dot show
the values of the triple (x̄,s,l).

As can clearly be seen, the topology of the grid in t
parameter space can be nicely recovered in the feature s
The lines are blurred as a consequence of finite samples:
features on every time series segment suffer slightly fr
statistical errors and thus characterize, to a very small ex
the particular finite time series and not only the underly
parameters. However, these uncertainties of the feature
small enough not to deteriorate the usefulness of this c
cept.

C. Estimating the number of parameters—dimensions
in feature space

It is desirable to determine the number of parameters
describe the variations in a given standardizing sample,
to estimate the number of effective parametersde in the con-
text of statistical pattern recognition also known as the
trinsic dimension@7#. Under certain conditions, which w
will discuss below, methods normally used to estimate fr
tal dimensions of attractors can be used for this task. We
use the famous Grassberger-Procaccia correlation sum
the estimation of the correlation dimension, but local~be-
cause of curvatures! linear methods such as the local sing
value decomposition~SVD! method @13# can also be
employed.

As an example, we use two samples of time series p
duced by the noisy He´non map@Eq. ~6!#. The parameters
were chosen according toa50.910.9p1 and b520.3
10.9p2, 10000 values for each set. If a trajectory diverges
infinity, the corresponding parameters were discarded
replaced by a new random pair. For the first sample,p1 was
chosen randomly between 0 and 1, whilep2512p1, so we

FIG. 7. The feature vectors (^x& i ,si ,l i) of the standardizing
sample plotted in the feature space; compare to Fig. 4.
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expect thatde51. For the second set bothp1 and p2 were
independent random numbers uniformly distributed in@0,1#
such thatde52. For every time series in these sets we ag
estimated the features: the largest Lyapunov exponentl, the
meanx̄, and the standard deviations. By this procedure the
two samples of time series were represented by two set
points in the three-dimensional feature space, similar to F
7. Thede51 case yields a blurred curve in this space, a
the de52 case a blurred and bent surface.

We can numerically extract a dimensionality from the
data. Given a set ofN vectors yW iPRm, the Grassberger
Procaccia correlation sum is defined as

C~e!5
2

N~N21! (
i , j

N

Q„e2d~yW i2yW j !…, ~8!

whereQ is the Heaviside step function, andd is a metric.
When the vectorsyW i are a random sample taken from a s
with ~fractal! dimensionD f<m, then there will be~under
suitable conditions, e.g.,N sufficiently large! a scaling range
in e whereC(e)}eD f . In our context the vectorsyW i would
naturally be the feature vectors of the time seriesSi . We
then expect the correlation sum to scale as

C~e!}ede. ~9!

The local slopes of lnC vs lne,

d~e!5
d ln C~e!

d ln e
,

are usually regarded as length scale dependent dimens
which can be useful for the characterization of noisy attr
tors.

In the present casede also typically depends one. The
influence of parameter variation on the selected features
be different, so that the extension of the data cloud is diff
ent in different spatial directions, so that on large sca
fewer dimensions are visible. Moreover, the estimation
each feature vector from a finite time series produces sta
tical fluctuations which look like noise and increase the
mension on the small scales, as can be seen in Fig. 8.

Note that it is not the feature vectors themselves that e
but only their pairwise distances. If we are able to determ
the distances between pairs of time series,d(Si ,Sj ), directly,
in principle we have the possibility of estimatingde without
constructing any feature vectors, and thus circumventing
delicate task of feature selection. Unfortunately, there
still several unsolved problems with this approach. The m
problem is to find a good metric for the time series. So
candidates based on cross-prediction errors@14,4#, which are
attractive from the physical and computational points
view, are only dissimilarity measures and do not possess
the properties of a metric; also see Refs.@15,16# for a dis-
cussion of some other measures. Up to now we have
succeeded in finding a metric which produced robust a
easy interpretable results, comparable to these show
Fig. 8.
5-7
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V. NONSTATIONARITY AND PATHS IN FEATURE SPACE

The previous discussions were based on standardi
samples where each single time series was stationary by
struction. In a nonstationary setting, typically a single lo
time series with time dependent parameters will be cut i
segments which, for the sake of identical statistical errors
the features, should have equal lengths. These segmen
at best pseudostationary, i.e., the parameter variation in
each given segment can be neglected. To increase the
ber of feature vectors, one can use overlapping segm
which form the standardizing sample. Since now the sam
elements possess a natural time ordering, it makes sen
study the path in the feature space thus created. For an i
tration here we use data from the Mackey-Glass delay
ferential equation@17#, which for our parameter values an
the time lagt555 has attractor dimensions between un
and about 10:

ẋ~ t !5
ax~ t2t!

11x~ t2t!10
2bx~ t !. ~10!

The parametersa andb were varied on an elliptic path in thi
two-dimensional parameter space,a(t)50.310.1 cos(Vt)
b(t)50.12510.025 sin(Vt), and V51/(2000t). The com-
plete nonstationary time series sampled withDt5t/2 is plot-
ted in Fig. 9. As features, we use the two-point correlat
m025^xt xt22&, the mean̂ x&, and the standard deviations2

of the data on 50 disjoint moving windows of length 200t
each. Although now the dynamics of each time series s
ment is not strictly stationary, we can of course compute

FIG. 8. C(e) ~top! and the local slopesd(e) ~below! estimated
in the feature space spanned by (^x& i ,si ,l i) ~also compare Fig. 7!
varying one parameter~a! and two parameters~b!.
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values of these features, which can be interpreted as a kin
average over the small remaining nonstationarity inside e
segment. We see a clear loop in feature space in Fig. 10
the topology of a circle. Longer time series yield even clea
results, but we purposely restrict ourselves here to a sm
amount of data in order to demonstrate the applicability
the method in realistic situations.

The situation of nonstationarity requires an additional d
cussion of time scales. In order to be able to compute
features in a robust way, the time dependence of the par
eters should be slow compared to the internal time scale
those variables which are to be eliminated. The shorter
time series segments on which features are computed,
large are the statistical errors of the values of these featu
Overly large statistical fluctuations may conceal the struct
one is searching for. If no clear time scale separation ex
everything is difficult and the concept might be unapplicab

In our example for nonstationarity, a second issue is h
den: the harmonic time dependence ofa(t) andb(t) can be
created by two additional deterministic degrees of freed
~e.g., ȧ52v1

2b, ḃ52v2a, with suitablev1 and v2), in
which case there is no nonstationarity at all. However,
order to reconstruct these in a time delay embedding spa´
la Takens, one should use a time lag which is huge compa
to a suitable lag for the Mackey-Glass dynamics, so that
practically impossible to reconstruct both parts of the d
namics, the Mackey-Glass dynamics, and thea2b dynam-
ics, in the same time delay embedding space. Hence
point of view of nonstationarity is more appropriate. Non

FIG. 9. Time series of the nonstationary Mackey-Glass sys
@Eq. ~10!#.

FIG. 10. Loop in feature space, representing the nonstation
Mackey-Glass time series of Fig. 9. Crosses: projection of the
ture vectors onto the bottom plane.
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FIG. 11. A set of feature vectorsv2PV2 cal-
culated from the time series of the stator curre
of an induction motor. The entries are three com
ponents of windowed Fourier spectra of sectio
of the time series which are harmonic to the ele
tric supply frequency.
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l at
theless, it shows that there is~naturally! some ambiguity in
the distinction between system variables and parameter
practice, the interpretation of what can be considered
noise is also vague. Often, drifting parameters and no
have a clear time scale separation, but certain types of
cesses such as 1/f can yield complications.

VI. FAILURE DETECTION FOR INDUCTION MOTORS

Finally we want to show a practical application of o
concept of parameter identification to a problem of sig
processing, the failure detection of induction~electro!motors,
by monitoring a single phase of the stator current. This pr
lem from electrical engineering has the advantage of bein
real world problem instead of an experiment which may s
ply be designed to show low-dimensional behavior; see R
@18#, and references cited therein, for a closer introduction
this subject.

The stator current of induction motors can easily be m
sured at the power supply, and offers a cheap method
monitoring these machines which are very widespread in
dustry applications~e.g., to drive conveyor belts, assemb
lines, air-condition systems, etc.!. The difficulty is to isolate
changes of the stator current caused by~developing! failures
from all other influences where, of course, possible failu
have to be detected well before the motor breaks down.
quantities which mainly influence the stator current are~be-
sides the electrical supply frequency! the magnitude and time
dependence of the torque of the motor~i.e., it makes a dif-
ference if the motor drives a constant torque or an oscilla
load torque like a compressor!, the production tolerances~the
air gap between the stator and rotor and the winding dis
bution of the stator!, the environmental conditions prese
during operation~essentially the temperature and the air h
midity!, and, last but not least, possible failures. Typical fa
ures includes damage to the rotor due to overheating, im
ances of the driven loads, and damage to the bearing r
due to~continuous! abrasion. The impact of the load torqu
and the production tolerances on the stator current is t
cally about one magnitude larger than that of the envir
mental conditions and possible failures. The influences
these last two quantities are about the same. The rotati
05621
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frequency of induction motors cannot be regulated, and
slightly less~1– 2 %, depending on the load torque! than one
half or one time~depending on the construction of the moto!
the electrical supply frequency. Therefore, this quantity d
not independently enter the stator current.

From this it follows that a reliable monitoring of induc
tion motors requires training a fault sensing algorithm w
data recorded from the particular~healthy! motor which
should be monitored in order to learn about the load sta
and production tolerances of this motor. Additionally, a s
lection of the environmental conditions present during n
mal operation can be covered. However, since in prac
one cannot expect that all potential environmental conditi
are contained in the training set, the failure detection al
rithm must be able to distinguish between previously un
served motor states and actual faults. In Ref.@18# a method
of geometric signal separation for the failure detection
induction motors was introduced, which successfully de
with this problem.

Here we only want to show one aspect of this proble
whose analysis is important for the development of a so
tion: the environmental degrees of freedom of the stator c
rent of induction motors. Due to the quasiperiodicity of t
stator current and theoretical arguments, the entries of
feature vectors are appropriately chosen components of
dowed Fourier spectra of sections of the recorded time se
In Ref. @18# it was shown that there exist two feature spac
V1 and V2, where inV2 almost only information about the
average load torque, the production tolerances, and the e
ronmental conditions enter, while inV1 the information
about motor failures and the time dependence of the torqu
additionally contained. The components of the feature ve
tors v2PV2 have to be harmonics of the electrical supp
frequency. In Fig. 11 a set of feature vectorsv2 calculated
from data of an induction motor is plotted in the thre
dimensional feature spaceV2.

The data set consists of seven recordings from a four-p
induction motor with 8-kW power, where each recordin
contains 12 time series~of 9-min length each! which were
generated during the operation of a single load. Four type
loads~constant, sinusoidal at a rotating frequency of the m
tor, sinusoidal at a half rotating frequency, and sinusoida
5-9
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a twice rotating frequency! were operated at each of thre
torques~half, three quarter, and full rated loads of the m
tor!. The environmental conditions between the different
cordings have partially changed, but we do not have
information about this. Four recordings were done with
unbalanced disk attached to the rotor shaft of the moto
order to simulate an imbalance. From each of the 84 t
series, 204 feature vectors were calculated which are plo
in Fig. 11.

Calculating the covariance matrix of this set of featu
vectors shows that, to a very good approximation, all vec
lie in a plane spanned by the eigenvectors with the larg
eigenvalues of the covariance matrix. The eigenvalue of
eigenvector perpendicular to the plane turns out to be
times smaller than the second largest eigenvalue, and a
320 times smaller than the largest eigenvalue.

The 12 large clusters in Fig. 11, which are well separa
from each other, correspond to the three load torques of
motor and to four environmental conditions which appear
be clearly different. We may conclude that two of the sev
recordings which correspond to clusters lying pairwise cl
to each other are recorded under similar environmental c
ditions ~i.e., within a short period of time!; however, as men-
tioned above we do not have information about this. We n
can conclude that the two visible degrees of freedom in
feature spaceV2 correspond to the average load torque of
motor and to one environmental degree of freedom whic
probably dominated by the temperature. We also expect
in the higher-dimensional, failure sensitive feature spaceV1,
only one environmental degree of freedom visibly ente
This is a very useful result, because the structure ofV1 is
much more complicated than that ofV2. We want to mention
that, despite the fact that induction motors may appear no
be very complicated systems, these results cannot be
tained from theoretical arguments or models of induct
machines.

VII. OVEREMBEDDING AND INSTANTANEOUS
PARAMETERS

Our approach in this paper is to rely exclusively on tim
series data representing the systems’ dynamics. If, howe
a training set of data is available, where in addition to o
servables system parameters are measured synchrono
and this training set covers a suitably large range of differ
parameter settings, an alternative approach suggested by
litz et al. @5# can be followed. Since some aspects are rela
to our approach, this shall be briefly revisited here. This
proach can be formalized by the idea of overembedding
troduced in Ref.@19#: An implicit knowledge of the equa
tions of motion is represented by a delay vector and the n
observation, (sWn ,sn11), since these vectors of the extend
delay embedding space are confined to a manifold. Equat
of motion corresponding to a modified parameter configu
tion yield a different manifold, to which the delay vectors
the modified dynamics are again confined. For its unamb
ous distinction from the first manifold, one has to extend
phase space further. For each time dependent paramete
needs two additional directions in phase space, as show
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Ref. @19#. In this extended phase space, neighbors of a gi
delay vector are states of the dynamical system obse
under the same parameter setting referred to in the pre
delay vector, or others nearby. It was shown in Ref.@19# that
for D variable parameters and anN-dimensional phase space
one has to reconstruct at mostN1D degrees of freedom, an
thus use an embedding space ofm.2(N1D).

Together with this background, the idea of Parlitzet al.
relies on the existence of a training set which contains dir
measurements of those parameters which should be d
mined later on in situations where they are no longer m

sured. Thus we start from time series of tuples (sn ,pW n). The
series ofsn is converted into delay vectors with a higher th
minimal dimension, and through this procedure every de

vector sWn possesses a corresponding parameter vectorpW n .

Thus there is a trivial map fromsW to pW . For every delay
vector of a test set one searches for theN closest delay vec-
tors from the training set, for which there existN correspond-
ing parameter vectors. The actual setting of the paramete
then a suitable average over these parameter vectors c
sponding to the training vectors. Overembedding is nee

in order to guarantee that the map fromsW to pW is invertible.
Thus here there is no need to select suitable features

stead the training situation fixes which parameters can
identified from the test set. This concept can deal with mu
shorter time series segments in the test phase, since one
give an estimate ofpW for every singlem-dimensional delay
vector derived from the time series. The training set, ho
ever, has to be as large as or even larger than the whole
sets we are using in this paper, since for every delay ve
in the test set one needs a ‘‘good’’ neighbor in the traini
set for a reasonable parameter identification. Thus the tr
ing data have to fill the high-dimensional embedding sp
reasonably well. In addition, as mentioned above, in
training period the setting of the parameter vectorspW n also
has to be recorded. Thus this approach applies to a diffe
setting of the problem.

VIII. CONCLUSIONS

We have shown that variations of parameters underlyin
set of time series can be identified qualitatively and qua
tatively in terms of their number and the manner of variati
in feature spaces. This supplies an approach to characte
tions of both nonstationary dynamical phenomena and se
time series stemming from related dynamical phenomena
nonstationary situations, one can follow paths in feat
space representing the time evolution of system parame
and thus identify their own dynamics; this amounts to a t
mendous reduction of complexity, since the fast degree
freedom, calledxW andjW in Eq. ~1!, are eliminated.

Although in the motivation of the method we drew a pa
allel to the time delay embedding method for the reconstr
tion of state spaces from scalar time series, there are s
essential differences which make the range of applicability
the parameter reconstruction different. This method app
5-10
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to deterministic and stochastic processes, and a strict sta
arity of the single time series segments is not required.
the other hand, we do not see a way to construct a fea
space which is general enough toguaranteethat all time
dependent parameters will be visible. Presumably for e
problem one has to optimize the feature space and to
a

s

.

as
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different combinations of features to represent the change
all parameters on approximately similar scales.
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@5# U. Parlitz, R. Zöller, J. Holzfuss, and W. Lauterborn, Int. J

Bifurcation Chaos Appl. Sci. Eng.4, 1715~1994!.
@6# H. Whitney, Ann. Math.37, 645 ~1936!.
@7# K. Fukunaga,Statistical Pattern Recognition~Academic Press,

Boston, 1990!.
@8# A. C. Tsoi, D. S.-C. So and A. A. Sergejew, inAdvances in

Neural Information Processing Systems 6, edited by J. D.
Cowan, G. Tesauro and J. Alspector,~Kaufmann, San Fran-
cisco, 1994!, pp. 1151–1158; J. Pardy, S. Roberts, L. Tar
senko, and J. Stradling, J. Sleep Res.5, 201 ~1996!.

@9# G. E. P. Box and G. M. Jenkins,Time Series Analysis~Holden-
-

Day, San Francisco, 1976!.
@10# J. D. Farmer and J. Sidorowich, Phys. Rev. Lett.59, 845

~1987!.
@11# J. P. Crutchfield and B. S. McNamara, Complex Syst.1, 417

~1987!.
@12# T. Sauer, J. A. Yorke, and M. Casdagli, J. Stat. Phys.65, 579

~1991!.
@13# T. Hediger, A. Passamante, and M. E. Farrell, Phys. Rev

41, 5325~1990!.
@14# T. Schreiber, Phys. Rev. Lett.78, 843 ~1997!.
@15# R. Moeckel and B. Murray, Physica D102, 187 ~1997!.
@16# T. Schreiber, Phys. Rep.308, 2 ~1999!.
@17# M. C. Mackey and L. Glass, Science197, 287 ~1977!.
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